Metamath Proof Explorer


Theorem ofmres

Description: Equivalent expressions for a restriction of the function operation map. Unlike oF R which is a proper class, ` ( oF R |`( A X. B ) ) can be a set by ofmresex , allowing it to be used as a function or structure argument. By ofmresval , the restricted operation map values are the same as the original values, allowing theorems for oF R to be reused. (Contributed by NM, 20-Oct-2014)

Ref Expression
Assertion ofmres fRA×B=fA,gBfRfg

Proof

Step Hyp Ref Expression
1 ssv AV
2 ssv BV
3 resmpo AVBVfV,gVxdomfdomgfxRgxA×B=fA,gBxdomfdomgfxRgx
4 1 2 3 mp2an fV,gVxdomfdomgfxRgxA×B=fA,gBxdomfdomgfxRgx
5 df-of fR=fV,gVxdomfdomgfxRgx
6 5 reseq1i fRA×B=fV,gVxdomfdomgfxRgxA×B
7 eqid A=A
8 eqid B=B
9 vex fV
10 vex gV
11 9 dmex domfV
12 11 inex1 domfdomgV
13 12 mptex xdomfdomgfxRgxV
14 5 ovmpt4g fVgVxdomfdomgfxRgxVfRfg=xdomfdomgfxRgx
15 9 10 13 14 mp3an fRfg=xdomfdomgfxRgx
16 7 8 15 mpoeq123i fA,gBfRfg=fA,gBxdomfdomgfxRgx
17 4 6 16 3eqtr4i fRA×B=fA,gBfRfg