Metamath Proof Explorer


Theorem oien

Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 F=OrdIsoRA
Assertion oien AVRWeAdomFA

Proof

Step Hyp Ref Expression
1 oicl.1 F=OrdIsoRA
2 1 oiexg AVFV
3 1 oiiso AVRWeAFIsomE,RdomFA
4 isof1o FIsomE,RdomFAF:domF1-1 ontoA
5 3 4 syl AVRWeAF:domF1-1 ontoA
6 f1oen3g FVF:domF1-1 ontoAdomFA
7 2 5 6 syl2an2r AVRWeAdomFA