Metamath Proof Explorer


Theorem oiiso

Description: The order isomorphism of the well-order R on A is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 F=OrdIsoRA
Assertion oiiso AVRWeAFIsomE,RdomFA

Proof

Step Hyp Ref Expression
1 oicl.1 F=OrdIsoRA
2 exse AVRSeA
3 1 ordtype RWeARSeAFIsomE,RdomFA
4 3 ancoms RSeARWeAFIsomE,RdomFA
5 2 4 sylan AVRWeAFIsomE,RdomFA