Metamath Proof Explorer


Theorem omelon2

Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013)

Ref Expression
Assertion omelon2 ωVωOn

Proof

Step Hyp Ref Expression
1 omon ωOnω=On
2 1 ori ¬ωOnω=On
3 onprc ¬OnV
4 eleq1 ω=OnωVOnV
5 3 4 mtbiri ω=On¬ωV
6 2 5 syl ¬ωOn¬ωV
7 6 con4i ωVωOn