Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | omelon2 | |- ( _om e. _V -> _om e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omon | |- ( _om e. On \/ _om = On ) |
|
2 | 1 | ori | |- ( -. _om e. On -> _om = On ) |
3 | onprc | |- -. On e. _V |
|
4 | eleq1 | |- ( _om = On -> ( _om e. _V <-> On e. _V ) ) |
|
5 | 3 4 | mtbiri | |- ( _om = On -> -. _om e. _V ) |
6 | 2 5 | syl | |- ( -. _om e. On -> -. _om e. _V ) |
7 | 6 | con4i | |- ( _om e. _V -> _om e. On ) |