Metamath Proof Explorer


Theorem omelon2

Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013)

Ref Expression
Assertion omelon2
|- ( _om e. _V -> _om e. On )

Proof

Step Hyp Ref Expression
1 omon
 |-  ( _om e. On \/ _om = On )
2 1 ori
 |-  ( -. _om e. On -> _om = On )
3 onprc
 |-  -. On e. _V
4 eleq1
 |-  ( _om = On -> ( _om e. _V <-> On e. _V ) )
5 3 4 mtbiri
 |-  ( _om = On -> -. _om e. _V )
6 2 5 syl
 |-  ( -. _om e. On -> -. _om e. _V )
7 6 con4i
 |-  ( _om e. _V -> _om e. On )