Metamath Proof Explorer


Theorem ondif1

Description: Two ways to say that A is a nonzero ordinal number. Lemma 1.10 of Schloeder p. 2. (Contributed by Mario Carneiro, 21-May-2015)

Ref Expression
Assertion ondif1 AOn1𝑜AOnA

Proof

Step Hyp Ref Expression
1 dif1o AOn1𝑜AOnA
2 on0eln0 AOnAA
3 2 pm5.32i AOnAAOnA
4 1 3 bitr4i AOn1𝑜AOnA