Metamath Proof Explorer


Theorem onintrab2

Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003)

Ref Expression
Assertion onintrab2 xOnφxOn|φOn

Proof

Step Hyp Ref Expression
1 intexrab xOnφxOn|φV
2 onintrab xOn|φVxOn|φOn
3 1 2 bitri xOnφxOn|φOn