Metamath Proof Explorer


Theorem onmsuc

Description: Multiplication with successor. Theorem 4J(A2) of Enderton p. 80. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion onmsuc AOnBωA𝑜sucB=A𝑜B+𝑜A

Proof

Step Hyp Ref Expression
1 peano2 BωsucBω
2 nnon sucBωsucBOn
3 1 2 syl BωsucBOn
4 omv AOnsucBOnA𝑜sucB=recxVx+𝑜AsucB
5 3 4 sylan2 AOnBωA𝑜sucB=recxVx+𝑜AsucB
6 1 adantl AOnBωsucBω
7 6 fvresd AOnBωrecxVx+𝑜AωsucB=recxVx+𝑜AsucB
8 5 7 eqtr4d AOnBωA𝑜sucB=recxVx+𝑜AωsucB
9 ovex A𝑜BV
10 oveq1 x=A𝑜Bx+𝑜A=A𝑜B+𝑜A
11 eqid xVx+𝑜A=xVx+𝑜A
12 ovex A𝑜B+𝑜AV
13 10 11 12 fvmpt A𝑜BVxVx+𝑜AA𝑜B=A𝑜B+𝑜A
14 9 13 ax-mp xVx+𝑜AA𝑜B=A𝑜B+𝑜A
15 nnon BωBOn
16 omv AOnBOnA𝑜B=recxVx+𝑜AB
17 15 16 sylan2 AOnBωA𝑜B=recxVx+𝑜AB
18 fvres BωrecxVx+𝑜AωB=recxVx+𝑜AB
19 18 adantl AOnBωrecxVx+𝑜AωB=recxVx+𝑜AB
20 17 19 eqtr4d AOnBωA𝑜B=recxVx+𝑜AωB
21 20 fveq2d AOnBωxVx+𝑜AA𝑜B=xVx+𝑜ArecxVx+𝑜AωB
22 14 21 eqtr3id AOnBωA𝑜B+𝑜A=xVx+𝑜ArecxVx+𝑜AωB
23 frsuc BωrecxVx+𝑜AωsucB=xVx+𝑜ArecxVx+𝑜AωB
24 23 adantl AOnBωrecxVx+𝑜AωsucB=xVx+𝑜ArecxVx+𝑜AωB
25 22 24 eqtr4d AOnBωA𝑜B+𝑜A=recxVx+𝑜AωsucB
26 8 25 eqtr4d AOnBωA𝑜sucB=A𝑜B+𝑜A