Metamath Proof Explorer


Theorem onnmin

Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997)

Ref Expression
Assertion onnmin AOnBA¬BA

Proof

Step Hyp Ref Expression
1 intss1 BAAB
2 1 adantl AOnBAAB
3 ne0i BAA
4 oninton AOnAAOn
5 3 4 sylan2 AOnBAAOn
6 ssel2 AOnBABOn
7 ontri1 AOnBOnAB¬BA
8 5 6 7 syl2anc AOnBAAB¬BA
9 2 8 mpbid AOnBA¬BA