Metamath Proof Explorer


Theorem onpsstopbas

Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015)

Ref Expression
Assertion onpsstopbas On TopBases

Proof

Step Hyp Ref Expression
1 onsstopbas On TopBases
2 indistop Top
3 topbas Top TopBases
4 2 3 ax-mp TopBases
5 snex V
6 5 prid2
7 snsn0non ¬ On
8 jcn ¬ On ¬ On
9 6 7 8 mp2 ¬ On
10 onelon On On
11 10 ex On On
12 9 11 mto ¬ On
13 4 12 pm3.2i TopBases ¬ On
14 ssnelpss On TopBases TopBases ¬ On On TopBases
15 1 13 14 mp2 On TopBases