Metamath Proof Explorer


Theorem onpsstopbas

Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015)

Ref Expression
Assertion onpsstopbas OnTopBases

Proof

Step Hyp Ref Expression
1 onsstopbas OnTopBases
2 indistop Top
3 topbas TopTopBases
4 2 3 ax-mp TopBases
5 snex V
6 5 prid2
7 snsn0non ¬On
8 jcn ¬On¬On
9 6 7 8 mp2 ¬On
10 onelon OnOn
11 10 ex OnOn
12 9 11 mto ¬On
13 4 12 pm3.2i TopBases¬On
14 ssnelpss OnTopBasesTopBases¬OnOnTopBases
15 1 13 14 mp2 OnTopBases