Metamath Proof Explorer


Theorem ontgval

Description: The topology generated from an ordinal number B is suc U. B . (Contributed by Chen-Pang He, 10-Oct-2015)

Ref Expression
Assertion ontgval B On topGen B = suc B

Proof

Step Hyp Ref Expression
1 eltg4i x topGen B x = B 𝒫 x
2 inex1g B On B 𝒫 x V
3 onss B On B On
4 ssinss1 B On B 𝒫 x On
5 3 4 syl B On B 𝒫 x On
6 ssonuni B 𝒫 x V B 𝒫 x On B 𝒫 x On
7 2 5 6 sylc B On B 𝒫 x On
8 eleq1 x = B 𝒫 x x On B 𝒫 x On
9 8 biimprd x = B 𝒫 x B 𝒫 x On x On
10 1 7 9 syl2imc B On x topGen B x On
11 onuni B On B On
12 suceloni B On suc B On
13 11 12 syl B On suc B On
14 10 13 jctird B On x topGen B x On suc B On
15 tg1 x topGen B x B
16 15 a1i B On x topGen B x B
17 sucidg B On B suc B
18 11 17 syl B On B suc B
19 16 18 jctird B On x topGen B x B B suc B
20 ontr2 x On suc B On x B B suc B x suc B
21 14 19 20 syl6c B On x topGen B x suc B
22 elsuci x suc B x B x = B
23 eloni B On Ord B
24 orduniss Ord B B B
25 23 24 syl B On B B
26 bastg B On B topGen B
27 25 26 sstrd B On B topGen B
28 27 sseld B On x B x topGen B
29 ssid B B
30 eltg3i B On B B B topGen B
31 29 30 mpan2 B On B topGen B
32 eleq1a B topGen B x = B x topGen B
33 31 32 syl B On x = B x topGen B
34 28 33 jaod B On x B x = B x topGen B
35 22 34 syl5 B On x suc B x topGen B
36 21 35 impbid B On x topGen B x suc B
37 36 eqrdv B On topGen B = suc B