Metamath Proof Explorer


Theorem ontgval

Description: The topology generated from an ordinal number B is suc U. B . (Contributed by Chen-Pang He, 10-Oct-2015)

Ref Expression
Assertion ontgval ( 𝐵 ∈ On → ( topGen ‘ 𝐵 ) = suc 𝐵 )

Proof

Step Hyp Ref Expression
1 eltg4i ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 = ( 𝐵 ∩ 𝒫 𝑥 ) )
2 inex1g ( 𝐵 ∈ On → ( 𝐵 ∩ 𝒫 𝑥 ) ∈ V )
3 onss ( 𝐵 ∈ On → 𝐵 ⊆ On )
4 ssinss1 ( 𝐵 ⊆ On → ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ On )
5 3 4 syl ( 𝐵 ∈ On → ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ On )
6 ssonuni ( ( 𝐵 ∩ 𝒫 𝑥 ) ∈ V → ( ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ On → ( 𝐵 ∩ 𝒫 𝑥 ) ∈ On ) )
7 2 5 6 sylc ( 𝐵 ∈ On → ( 𝐵 ∩ 𝒫 𝑥 ) ∈ On )
8 eleq1 ( 𝑥 = ( 𝐵 ∩ 𝒫 𝑥 ) → ( 𝑥 ∈ On ↔ ( 𝐵 ∩ 𝒫 𝑥 ) ∈ On ) )
9 8 biimprd ( 𝑥 = ( 𝐵 ∩ 𝒫 𝑥 ) → ( ( 𝐵 ∩ 𝒫 𝑥 ) ∈ On → 𝑥 ∈ On ) )
10 1 7 9 syl2imc ( 𝐵 ∈ On → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 ∈ On ) )
11 onuni ( 𝐵 ∈ On → 𝐵 ∈ On )
12 suceloni ( 𝐵 ∈ On → suc 𝐵 ∈ On )
13 11 12 syl ( 𝐵 ∈ On → suc 𝐵 ∈ On )
14 10 13 jctird ( 𝐵 ∈ On → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → ( 𝑥 ∈ On ∧ suc 𝐵 ∈ On ) ) )
15 tg1 ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 𝐵 )
16 15 a1i ( 𝐵 ∈ On → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 𝐵 ) )
17 sucidg ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 )
18 11 17 syl ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 )
19 16 18 jctird ( 𝐵 ∈ On → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → ( 𝑥 𝐵 𝐵 ∈ suc 𝐵 ) ) )
20 ontr2 ( ( 𝑥 ∈ On ∧ suc 𝐵 ∈ On ) → ( ( 𝑥 𝐵 𝐵 ∈ suc 𝐵 ) → 𝑥 ∈ suc 𝐵 ) )
21 14 19 20 syl6c ( 𝐵 ∈ On → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 ∈ suc 𝐵 ) )
22 elsuci ( 𝑥 ∈ suc 𝐵 → ( 𝑥 𝐵𝑥 = 𝐵 ) )
23 eloni ( 𝐵 ∈ On → Ord 𝐵 )
24 orduniss ( Ord 𝐵 𝐵𝐵 )
25 23 24 syl ( 𝐵 ∈ On → 𝐵𝐵 )
26 bastg ( 𝐵 ∈ On → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
27 25 26 sstrd ( 𝐵 ∈ On → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
28 27 sseld ( 𝐵 ∈ On → ( 𝑥 𝐵𝑥 ∈ ( topGen ‘ 𝐵 ) ) )
29 ssid 𝐵𝐵
30 eltg3i ( ( 𝐵 ∈ On ∧ 𝐵𝐵 ) → 𝐵 ∈ ( topGen ‘ 𝐵 ) )
31 29 30 mpan2 ( 𝐵 ∈ On → 𝐵 ∈ ( topGen ‘ 𝐵 ) )
32 eleq1a ( 𝐵 ∈ ( topGen ‘ 𝐵 ) → ( 𝑥 = 𝐵𝑥 ∈ ( topGen ‘ 𝐵 ) ) )
33 31 32 syl ( 𝐵 ∈ On → ( 𝑥 = 𝐵𝑥 ∈ ( topGen ‘ 𝐵 ) ) )
34 28 33 jaod ( 𝐵 ∈ On → ( ( 𝑥 𝐵𝑥 = 𝐵 ) → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) )
35 22 34 syl5 ( 𝐵 ∈ On → ( 𝑥 ∈ suc 𝐵𝑥 ∈ ( topGen ‘ 𝐵 ) ) )
36 21 35 impbid ( 𝐵 ∈ On → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ∈ suc 𝐵 ) )
37 36 eqrdv ( 𝐵 ∈ On → ( topGen ‘ 𝐵 ) = suc 𝐵 )