Metamath Proof Explorer


Theorem ontgsucval

Description: The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015)

Ref Expression
Assertion ontgsucval ( 𝐴 ∈ On → ( topGen ‘ suc 𝐴 ) = suc 𝐴 )

Proof

Step Hyp Ref Expression
1 suceloni ( 𝐴 ∈ On → suc 𝐴 ∈ On )
2 ontgval ( suc 𝐴 ∈ On → ( topGen ‘ suc 𝐴 ) = suc suc 𝐴 )
3 1 2 syl ( 𝐴 ∈ On → ( topGen ‘ suc 𝐴 ) = suc suc 𝐴 )
4 eloni ( 𝐴 ∈ On → Ord 𝐴 )
5 ordunisuc ( Ord 𝐴 suc 𝐴 = 𝐴 )
6 4 5 syl ( 𝐴 ∈ On → suc 𝐴 = 𝐴 )
7 suceq ( suc 𝐴 = 𝐴 → suc suc 𝐴 = suc 𝐴 )
8 6 7 syl ( 𝐴 ∈ On → suc suc 𝐴 = suc 𝐴 )
9 3 8 eqtrd ( 𝐴 ∈ On → ( topGen ‘ suc 𝐴 ) = suc 𝐴 )