Metamath Proof Explorer


Theorem ontgsucval

Description: The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015)

Ref Expression
Assertion ontgsucval
|- ( A e. On -> ( topGen ` suc A ) = suc A )

Proof

Step Hyp Ref Expression
1 suceloni
 |-  ( A e. On -> suc A e. On )
2 ontgval
 |-  ( suc A e. On -> ( topGen ` suc A ) = suc U. suc A )
3 1 2 syl
 |-  ( A e. On -> ( topGen ` suc A ) = suc U. suc A )
4 eloni
 |-  ( A e. On -> Ord A )
5 ordunisuc
 |-  ( Ord A -> U. suc A = A )
6 4 5 syl
 |-  ( A e. On -> U. suc A = A )
7 suceq
 |-  ( U. suc A = A -> suc U. suc A = suc A )
8 6 7 syl
 |-  ( A e. On -> suc U. suc A = suc A )
9 3 8 eqtrd
 |-  ( A e. On -> ( topGen ` suc A ) = suc A )