Metamath Proof Explorer


Theorem onsuctop

Description: A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015)

Ref Expression
Assertion onsuctop ( 𝐴 ∈ On → suc 𝐴 ∈ Top )

Proof

Step Hyp Ref Expression
1 ontgsucval ( 𝐴 ∈ On → ( topGen ‘ suc 𝐴 ) = suc 𝐴 )
2 suceloni ( 𝐴 ∈ On → suc 𝐴 ∈ On )
3 ontopbas ( suc 𝐴 ∈ On → suc 𝐴 ∈ TopBases )
4 tgcl ( suc 𝐴 ∈ TopBases → ( topGen ‘ suc 𝐴 ) ∈ Top )
5 2 3 4 3syl ( 𝐴 ∈ On → ( topGen ‘ suc 𝐴 ) ∈ Top )
6 1 5 eqeltrrd ( 𝐴 ∈ On → suc 𝐴 ∈ Top )