Description: One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsuctopon | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuctop | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ Top ) | |
| 2 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 3 | ordunisuc | ⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) | |
| 4 | 3 | eqcomd | ⊢ ( Ord 𝐴 → 𝐴 = ∪ suc 𝐴 ) |
| 5 | 2 4 | syl | ⊢ ( 𝐴 ∈ On → 𝐴 = ∪ suc 𝐴 ) |
| 6 | istopon | ⊢ ( suc 𝐴 ∈ ( TopOn ‘ 𝐴 ) ↔ ( suc 𝐴 ∈ Top ∧ 𝐴 = ∪ suc 𝐴 ) ) | |
| 7 | 1 5 6 | sylanbrc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) |