Metamath Proof Explorer


Theorem onsuctopon

Description: One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015)

Ref Expression
Assertion onsuctopon ( 𝐴 ∈ On → suc 𝐴 ∈ ( TopOn ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 onsuctop ( 𝐴 ∈ On → suc 𝐴 ∈ Top )
2 eloni ( 𝐴 ∈ On → Ord 𝐴 )
3 ordunisuc ( Ord 𝐴 suc 𝐴 = 𝐴 )
4 3 eqcomd ( Ord 𝐴𝐴 = suc 𝐴 )
5 2 4 syl ( 𝐴 ∈ On → 𝐴 = suc 𝐴 )
6 istopon ( suc 𝐴 ∈ ( TopOn ‘ 𝐴 ) ↔ ( suc 𝐴 ∈ Top ∧ 𝐴 = suc 𝐴 ) )
7 1 5 6 sylanbrc ( 𝐴 ∈ On → suc 𝐴 ∈ ( TopOn ‘ 𝐴 ) )