Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg3i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ∪ 𝐴 ∈ ( topGen ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) | |
| 2 | pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 3 | ssin | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∩ 𝒫 ∪ 𝐴 ) ) | |
| 4 | 1 2 3 | sylanblc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ( 𝐵 ∩ 𝒫 ∪ 𝐴 ) ) |
| 5 | 4 | unissd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ∪ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 ∪ 𝐴 ) ) |
| 6 | eltg | ⊢ ( 𝐵 ∈ 𝑉 → ( ∪ 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∪ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 ∪ 𝐴 ) ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( ∪ 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∪ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 ∪ 𝐴 ) ) ) |
| 8 | 5 7 | mpbird | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ∪ 𝐴 ∈ ( topGen ‘ 𝐵 ) ) |