Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - add the Axiom of Power Sets  
				Derive the Axiom of Pairing  
				op1stb  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Extract the first member of an ordered pair.  Theorem 73 of Suppes 
       p. 42.  (See op2ndb  to extract the second member, op1sta  for an
       alternate version, and op1st  for the preferred version.)  (Contributed by NM , 25-Nov-2003) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						op1stb.1  
						  ⊢   A  ∈  V         
					 
					
						 
						 
						op1stb.2  
						  ⊢   B  ∈  V         
					 
				
					 
					Assertion 
					op1stb  
					  ⊢    ⋂   ⋂   A  B        =  A         
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							op1stb.1  
							   ⊢   A  ∈  V         
						 
						
							2  
							
								
							 
							op1stb.2  
							   ⊢   B  ∈  V         
						 
						
							3  
							
								1  2 
							 
							dfop  
							   ⊢    A  B    =    A     A  B             
						 
						
							4  
							
								3 
							 
							inteqi  
							   ⊢    ⋂   A  B      =   ⋂    A     A  B               
						 
						
							5  
							
								
							 
							snex  
							   ⊢    A    ∈  V         
						 
						
							6  
							
								
							 
							prex  
							   ⊢    A  B    ∈  V         
						 
						
							7  
							
								5  6 
							 
							intpr  
							   ⊢    ⋂    A     A  B        =    A    ∩   A  B             
						 
						
							8  
							
								
							 
							snsspr1  
							   ⊢    A    ⊆   A  B           
						 
						
							9  
							
								
							 
							dfss2  
							    ⊢    A    ⊆   A  B      ↔     A    ∩   A  B      =   A           
						 
						
							10  
							
								8  9 
							 
							mpbi  
							   ⊢     A    ∩   A  B      =   A           
						 
						
							11  
							
								7  10 
							 
							eqtri  
							   ⊢    ⋂    A     A  B        =   A           
						 
						
							12  
							
								4  11 
							 
							eqtri  
							   ⊢    ⋂   A  B      =   A           
						 
						
							13  
							
								12 
							 
							inteqi  
							   ⊢    ⋂   ⋂   A  B        =   ⋂   A             
						 
						
							14  
							
								1 
							 
							intsn  
							   ⊢    ⋂   A      =  A         
						 
						
							15  
							
								13  14 
							 
							eqtri  
							   ⊢    ⋂   ⋂   A  B        =  A