Metamath Proof Explorer


Theorem opco1i

Description: Inference form of opco1 . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses opco1i.1 BV
opco1i.2 CV
Assertion opco1i BF1stC=FB

Proof

Step Hyp Ref Expression
1 opco1i.1 BV
2 opco1i.2 CV
3 1 a1i BV
4 2 a1i CV
5 3 4 opco1 BF1stC=FB
6 5 mptru BF1stC=FB