Metamath Proof Explorer


Theorem opelinxp

Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019)

Ref Expression
Assertion opelinxp CDRA×BCADBCDR

Proof

Step Hyp Ref Expression
1 brinxp2 CRA×BDCADBCRD
2 df-br CRA×BDCDRA×B
3 df-br CRDCDR
4 3 anbi2i CADBCRDCADBCDR
5 1 2 4 3bitr3i CDRA×BCADBCDR