Metamath Proof Explorer


Theorem opelopabg

Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by NM, 28-May-1995) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabg.1 x = A φ ψ
opelopabg.2 y = B ψ χ
Assertion opelopabg A V B W A B x y | φ χ

Proof

Step Hyp Ref Expression
1 opelopabg.1 x = A φ ψ
2 opelopabg.2 y = B ψ χ
3 1 2 sylan9bb x = A y = B φ χ
4 3 opelopabga A V B W A B x y | φ χ