Metamath Proof Explorer


Theorem opelopabgf

Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopabg uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Alexander van der Vekens, 8-Jul-2018)

Ref Expression
Hypotheses opelopabgf.x x ψ
opelopabgf.y y χ
opelopabgf.1 x = A φ ψ
opelopabgf.2 y = B ψ χ
Assertion opelopabgf A V B W A B x y | φ χ

Proof

Step Hyp Ref Expression
1 opelopabgf.x x ψ
2 opelopabgf.y y χ
3 opelopabgf.1 x = A φ ψ
4 opelopabgf.2 y = B ψ χ
5 opelopabsb A B x y | φ [˙A / x]˙ [˙B / y]˙ φ
6 nfcv _ x B
7 6 1 nfsbcw x [˙B / y]˙ ψ
8 3 sbcbidv x = A [˙B / y]˙ φ [˙B / y]˙ ψ
9 7 8 sbciegf A V [˙A / x]˙ [˙B / y]˙ φ [˙B / y]˙ ψ
10 2 4 sbciegf B W [˙B / y]˙ ψ χ
11 9 10 sylan9bb A V B W [˙A / x]˙ [˙B / y]˙ φ χ
12 5 11 bitrid A V B W A B x y | φ χ