Metamath Proof Explorer


Theorem opelstrbas

Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021)

Ref Expression
Hypotheses opelstrbas.s φSStructX
opelstrbas.v φVY
opelstrbas.b φBasendxVS
Assertion opelstrbas φV=BaseS

Proof

Step Hyp Ref Expression
1 opelstrbas.s φSStructX
2 opelstrbas.v φVY
3 opelstrbas.b φBasendxVS
4 baseid Base=SlotBasendx
5 structex SStructXSV
6 1 5 syl φSV
7 structfung SStructXFunS-1-1
8 1 7 syl φFunS-1-1
9 4 6 8 3 2 strfv2d φV=BaseS