Metamath Proof Explorer


Theorem opidg

Description: The ordered pair <. A , A >. in Kuratowski's representation. Closed form of opid . (Contributed by Peter Mazsa, 22-Jul-2019) (Avoid depending on this detail.)

Ref Expression
Assertion opidg AVAA=A

Proof

Step Hyp Ref Expression
1 dfopg AVAVAA=AAA
2 1 anidms AVAA=AAA
3 dfsn2 A=AA
4 3 eqcomi AA=A
5 4 preq2i AAA=AA
6 dfsn2 A=AA
7 5 6 eqtr4i AAA=A
8 2 7 eqtrdi AVAA=A