Metamath Proof Explorer


Theorem opidg

Description: The ordered pair <. A , A >. in Kuratowski's representation. Closed form of opid . (Contributed by Peter Mazsa, 22-Jul-2019) (Avoid depending on this detail.)

Ref Expression
Assertion opidg ( 𝐴𝑉 → ⟨ 𝐴 , 𝐴 ⟩ = { { 𝐴 } } )

Proof

Step Hyp Ref Expression
1 dfopg ( ( 𝐴𝑉𝐴𝑉 ) → ⟨ 𝐴 , 𝐴 ⟩ = { { 𝐴 } , { 𝐴 , 𝐴 } } )
2 1 anidms ( 𝐴𝑉 → ⟨ 𝐴 , 𝐴 ⟩ = { { 𝐴 } , { 𝐴 , 𝐴 } } )
3 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
4 3 eqcomi { 𝐴 , 𝐴 } = { 𝐴 }
5 4 preq2i { { 𝐴 } , { 𝐴 , 𝐴 } } = { { 𝐴 } , { 𝐴 } }
6 dfsn2 { { 𝐴 } } = { { 𝐴 } , { 𝐴 } }
7 5 6 eqtr4i { { 𝐴 } , { 𝐴 , 𝐴 } } = { { 𝐴 } }
8 2 7 eqtrdi ( 𝐴𝑉 → ⟨ 𝐴 , 𝐴 ⟩ = { { 𝐴 } } )