Metamath Proof Explorer


Theorem opnneieqvv

Description: The equivalence between neighborhood and open neighborhood. A variant of opnneieqv with two dummy variables. (Contributed by Zhi Wang, 31-Aug-2024)

Ref Expression
Hypotheses opnneir.1 φ J Top
opnneilv.2 φ y x ψ χ
opnneil.3 φ x = y ψ χ
Assertion opnneieqvv φ x nei J S ψ y J S y χ

Proof

Step Hyp Ref Expression
1 opnneir.1 φ J Top
2 opnneilv.2 φ y x ψ χ
3 opnneil.3 φ x = y ψ χ
4 1 2 3 opnneieqv φ x nei J S ψ x J S x ψ
5 3 opnneilem φ x J S x ψ y J S y χ
6 4 5 bitrd φ x nei J S ψ y J S y χ