Metamath Proof Explorer


Theorem oppccatb

Description: An opposite category is a category. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypotheses oppccatb.o O = oppCat C
oppccatb.c φ C V
Assertion oppccatb φ C Cat O Cat

Proof

Step Hyp Ref Expression
1 oppccatb.o O = oppCat C
2 oppccatb.c φ C V
3 1 oppccat C Cat O Cat
4 eqid oppCat O = oppCat O
5 4 oppccat O Cat oppCat O Cat
6 1 2oppchomf Hom 𝑓 C = Hom 𝑓 oppCat O
7 6 a1i φ Hom 𝑓 C = Hom 𝑓 oppCat O
8 1 2oppccomf comp 𝑓 C = comp 𝑓 oppCat O
9 8 a1i φ comp 𝑓 C = comp 𝑓 oppCat O
10 fvexd φ oppCat O V
11 7 9 2 10 catpropd φ C Cat oppCat O Cat
12 5 11 imbitrrid φ O Cat C Cat
13 3 12 impbid2 φ C Cat O Cat