Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Opposite category
oppccatb
Next ⟩
oppcmndclem
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppccatb
Description:
An opposite category is a category.
(Contributed by
Zhi Wang
, 23-Oct-2025)
Ref
Expression
Hypotheses
oppccatb.o
⊢
O
=
oppCat
⁡
C
oppccatb.c
⊢
φ
→
C
∈
V
Assertion
oppccatb
⊢
φ
→
C
∈
Cat
↔
O
∈
Cat
Proof
Step
Hyp
Ref
Expression
1
oppccatb.o
⊢
O
=
oppCat
⁡
C
2
oppccatb.c
⊢
φ
→
C
∈
V
3
1
oppccat
⊢
C
∈
Cat
→
O
∈
Cat
4
eqid
⊢
oppCat
⁡
O
=
oppCat
⁡
O
5
4
oppccat
⊢
O
∈
Cat
→
oppCat
⁡
O
∈
Cat
6
1
2oppchomf
⊢
Hom
𝑓
⁡
C
=
Hom
𝑓
⁡
oppCat
⁡
O
7
6
a1i
⊢
φ
→
Hom
𝑓
⁡
C
=
Hom
𝑓
⁡
oppCat
⁡
O
8
1
2oppccomf
⊢
comp
𝑓
⁡
C
=
comp
𝑓
⁡
oppCat
⁡
O
9
8
a1i
⊢
φ
→
comp
𝑓
⁡
C
=
comp
𝑓
⁡
oppCat
⁡
O
10
fvexd
⊢
φ
→
oppCat
⁡
O
∈
V
11
7
9
2
10
catpropd
⊢
φ
→
C
∈
Cat
↔
oppCat
⁡
O
∈
Cat
12
5
11
imbitrrid
⊢
φ
→
O
∈
Cat
→
C
∈
Cat
13
3
12
impbid2
⊢
φ
→
C
∈
Cat
↔
O
∈
Cat