Metamath Proof Explorer


Theorem oppcuprcl4

Description: Reverse closure for the class of universal property in opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
oppcuprcl4.o O = oppCat D
oppcuprcl4.b B = Base D
Assertion oppcuprcl4 φ X B

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x Could not format ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
2 oppcuprcl4.o O = oppCat D
3 oppcuprcl4.b B = Base D
4 2 3 oppcbas B = Base O
5 1 4 uprcl4 φ X B