Metamath Proof Explorer


Theorem oppggrpb

Description: Bidirectional form of oppggrp . (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypothesis oppgbas.1 O=opp𝑔R
Assertion oppggrpb RGrpOGrp

Proof

Step Hyp Ref Expression
1 oppgbas.1 O=opp𝑔R
2 1 oppggrp RGrpOGrp
3 eqid opp𝑔O=opp𝑔O
4 3 oppggrp OGrpopp𝑔OGrp
5 eqid BaseR=BaseR
6 1 5 oppgbas BaseR=BaseO
7 3 6 oppgbas BaseR=Baseopp𝑔O
8 7 a1i BaseR=Baseopp𝑔O
9 eqidd BaseR=BaseR
10 eqid +O=+O
11 eqid +opp𝑔O=+opp𝑔O
12 10 3 11 oppgplus x+opp𝑔Oy=y+Ox
13 eqid +R=+R
14 13 1 10 oppgplus y+Ox=x+Ry
15 12 14 eqtri x+opp𝑔Oy=x+Ry
16 15 a1i xBaseRyBaseRx+opp𝑔Oy=x+Ry
17 8 9 16 grppropd opp𝑔OGrpRGrp
18 17 mptru opp𝑔OGrpRGrp
19 4 18 sylib OGrpRGrp
20 2 19 impbii RGrpOGrp