Metamath Proof Explorer


Theorem oppgplusfval

Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Fan Zheng, 26-Jun-2016)

Ref Expression
Hypotheses oppgval.2 +˙=+R
oppgval.3 O=opp𝑔R
oppgplusfval.4 ˙=+O
Assertion oppgplusfval ˙=tpos+˙

Proof

Step Hyp Ref Expression
1 oppgval.2 +˙=+R
2 oppgval.3 O=opp𝑔R
3 oppgplusfval.4 ˙=+O
4 1 2 oppgval O=RsSet+ndxtpos+˙
5 4 fveq2i +O=+RsSet+ndxtpos+˙
6 1 fvexi +˙V
7 6 tposex tpos+˙V
8 plusgid +𝑔=Slot+ndx
9 8 setsid RVtpos+˙Vtpos+˙=+RsSet+ndxtpos+˙
10 7 9 mpan2 RVtpos+˙=+RsSet+ndxtpos+˙
11 5 10 eqtr4id RV+O=tpos+˙
12 tpos0 tpos=
13 8 str0 =+
14 12 13 eqtr2i +=tpos
15 reldmsets ReldomsSet
16 15 ovprc1 ¬RVRsSet+ndxtpos+˙=
17 4 16 eqtrid ¬RVO=
18 17 fveq2d ¬RV+O=+
19 fvprc ¬RV+R=
20 1 19 eqtrid ¬RV+˙=
21 20 tposeqd ¬RVtpos+˙=tpos
22 14 18 21 3eqtr4a ¬RV+O=tpos+˙
23 11 22 pm2.61i +O=tpos+˙
24 3 23 eqtri ˙=tpos+˙