Metamath Proof Explorer


Theorem oppgplusfval

Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Fan Zheng, 26-Jun-2016)

Ref Expression
Hypotheses oppgval.2 + ˙ = + R
oppgval.3 O = opp 𝑔 R
oppgplusfval.4 ˙ = + O
Assertion oppgplusfval ˙ = tpos + ˙

Proof

Step Hyp Ref Expression
1 oppgval.2 + ˙ = + R
2 oppgval.3 O = opp 𝑔 R
3 oppgplusfval.4 ˙ = + O
4 1 2 oppgval O = R sSet + ndx tpos + ˙
5 4 fveq2i + O = + R sSet + ndx tpos + ˙
6 1 fvexi + ˙ V
7 6 tposex tpos + ˙ V
8 plusgid + 𝑔 = Slot + ndx
9 8 setsid R V tpos + ˙ V tpos + ˙ = + R sSet + ndx tpos + ˙
10 7 9 mpan2 R V tpos + ˙ = + R sSet + ndx tpos + ˙
11 5 10 eqtr4id R V + O = tpos + ˙
12 tpos0 tpos =
13 8 str0 = +
14 12 13 eqtr2i + = tpos
15 reldmsets Rel dom sSet
16 15 ovprc1 ¬ R V R sSet + ndx tpos + ˙ =
17 4 16 syl5eq ¬ R V O =
18 17 fveq2d ¬ R V + O = +
19 fvprc ¬ R V + R =
20 1 19 syl5eq ¬ R V + ˙ =
21 20 tposeqd ¬ R V tpos + ˙ = tpos
22 14 18 21 3eqtr4a ¬ R V + O = tpos + ˙
23 11 22 pm2.61i + O = tpos + ˙
24 3 23 eqtri ˙ = tpos + ˙