Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
tpos0
Next ⟩
tposco
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpos0
Description:
Transposition of the empty set.
(Contributed by
NM
, 10-Sep-2015)
Ref
Expression
Assertion
tpos0
⊢
tpos
∅
=
∅
Proof
Step
Hyp
Ref
Expression
1
rel0
⊢
Rel
⁡
∅
2
eqid
⊢
∅
=
∅
3
fn0
⊢
∅
Fn
∅
↔
∅
=
∅
4
2
3
mpbir
⊢
∅
Fn
∅
5
tposfn2
⊢
Rel
⁡
∅
→
∅
Fn
∅
→
tpos
∅
Fn
∅
-1
6
1
4
5
mp2
⊢
tpos
∅
Fn
∅
-1
7
cnv0
⊢
∅
-1
=
∅
8
7
fneq2i
⊢
tpos
∅
Fn
∅
-1
↔
tpos
∅
Fn
∅
9
6
8
mpbi
⊢
tpos
∅
Fn
∅
10
fn0
⊢
tpos
∅
Fn
∅
↔
tpos
∅
=
∅
11
9
10
mpbi
⊢
tpos
∅
=
∅