Metamath Proof Explorer


Theorem tposfn2

Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposfn2 RelAFFnAtposFFnA-1

Proof

Step Hyp Ref Expression
1 tposfun FunFFuntposF
2 1 a1i RelAFunFFuntposF
3 dmtpos ReldomFdomtposF=domF-1
4 3 a1i domF=AReldomFdomtposF=domF-1
5 releq domF=AReldomFRelA
6 cnveq domF=AdomF-1=A-1
7 6 eqeq2d domF=AdomtposF=domF-1domtposF=A-1
8 4 5 7 3imtr3d domF=ARelAdomtposF=A-1
9 8 com12 RelAdomF=AdomtposF=A-1
10 2 9 anim12d RelAFunFdomF=AFuntposFdomtposF=A-1
11 df-fn FFnAFunFdomF=A
12 df-fn tposFFnA-1FuntposFdomtposF=A-1
13 10 11 12 3imtr4g RelAFFnAtposFFnA-1