Metamath Proof Explorer


Theorem oppgtset

Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypotheses oppgbas.1 O = opp 𝑔 R
oppgtset.2 J = TopSet R
Assertion oppgtset J = TopSet O

Proof

Step Hyp Ref Expression
1 oppgbas.1 O = opp 𝑔 R
2 oppgtset.2 J = TopSet R
3 eqid + R = + R
4 3 1 oppgval O = R sSet + ndx tpos + R
5 tsetid TopSet = Slot TopSet ndx
6 tsetndxnplusgndx TopSet ndx + ndx
7 4 5 6 setsplusg TopSet R = TopSet O
8 2 7 eqtri J = TopSet O