Metamath Proof Explorer


Theorem opprmul

Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypotheses opprval.1 B=BaseR
opprval.2 ·˙=R
opprval.3 O=opprR
opprmulfval.4 ˙=O
Assertion opprmul X˙Y=Y·˙X

Proof

Step Hyp Ref Expression
1 opprval.1 B=BaseR
2 opprval.2 ·˙=R
3 opprval.3 O=opprR
4 opprmulfval.4 ˙=O
5 1 2 3 4 opprmulfval ˙=tpos·˙
6 5 oveqi X˙Y=Xtpos·˙Y
7 ovtpos Xtpos·˙Y=Y·˙X
8 6 7 eqtri X˙Y=Y·˙X