Metamath Proof Explorer


Theorem opsrcrng

Description: The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses opsrcrng.o O=IordPwSerRT
opsrcrng.i φIV
opsrcrng.r φRCRing
opsrcrng.t φTI×I
Assertion opsrcrng φOCRing

Proof

Step Hyp Ref Expression
1 opsrcrng.o O=IordPwSerRT
2 opsrcrng.i φIV
3 opsrcrng.r φRCRing
4 opsrcrng.t φTI×I
5 eqid ImPwSerR=ImPwSerR
6 5 2 3 psrcrng φImPwSerRCRing
7 eqidd φBaseImPwSerR=BaseImPwSerR
8 5 1 4 opsrbas φBaseImPwSerR=BaseO
9 5 1 4 opsrplusg φ+ImPwSerR=+O
10 9 oveqdr φxBaseImPwSerRyBaseImPwSerRx+ImPwSerRy=x+Oy
11 5 1 4 opsrmulr φImPwSerR=O
12 11 oveqdr φxBaseImPwSerRyBaseImPwSerRxImPwSerRy=xOy
13 7 8 10 12 crngpropd φImPwSerRCRingOCRing
14 6 13 mpbid φOCRing