Metamath Proof Explorer


Theorem opsrplusg

Description: The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 30-Aug-2015) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses opsrbas.s S=ImPwSerR
opsrbas.o O=IordPwSerRT
opsrbas.t φTI×I
Assertion opsrplusg φ+S=+O

Proof

Step Hyp Ref Expression
1 opsrbas.s S=ImPwSerR
2 opsrbas.o O=IordPwSerRT
3 opsrbas.t φTI×I
4 plusgid +𝑔=Slot+ndx
5 plendxnplusgndx ndx+ndx
6 5 necomi +ndxndx
7 1 2 3 4 6 opsrbaslem φ+S=+O