Metamath Proof Explorer


Theorem opthne

Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018)

Ref Expression
Hypotheses opthne.1 AV
opthne.2 BV
Assertion opthne ABCDACBD

Proof

Step Hyp Ref Expression
1 opthne.1 AV
2 opthne.2 BV
3 opthneg AVBVABCDACBD
4 1 2 3 mp2an ABCDACBD