Metamath Proof Explorer


Theorem otth2

Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses otth.1 AV
otth.2 BV
otth.3 RV
Assertion otth2 ABR=CDSA=CB=DR=S

Proof

Step Hyp Ref Expression
1 otth.1 AV
2 otth.2 BV
3 otth.3 RV
4 1 2 opth AB=CDA=CB=D
5 4 anbi1i AB=CDR=SA=CB=DR=S
6 opex ABV
7 6 3 opth ABR=CDSAB=CDR=S
8 df-3an A=CB=DR=SA=CB=DR=S
9 5 7 8 3bitr4i ABR=CDSA=CB=DR=S