| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							otth.1 | 
							 |-  A e. _V  | 
						
						
							| 2 | 
							
								
							 | 
							otth.2 | 
							 |-  B e. _V  | 
						
						
							| 3 | 
							
								
							 | 
							otth.3 | 
							 |-  R e. _V  | 
						
						
							| 4 | 
							
								1 2
							 | 
							opth | 
							 |-  ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							anbi1i | 
							 |-  ( ( <. A , B >. = <. C , D >. /\ R = S ) <-> ( ( A = C /\ B = D ) /\ R = S ) )  | 
						
						
							| 6 | 
							
								
							 | 
							opex | 
							 |-  <. A , B >. e. _V  | 
						
						
							| 7 | 
							
								6 3
							 | 
							opth | 
							 |-  ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( <. A , B >. = <. C , D >. /\ R = S ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( A = C /\ B = D /\ R = S ) <-> ( ( A = C /\ B = D ) /\ R = S ) )  | 
						
						
							| 9 | 
							
								5 7 8
							 | 
							3bitr4i | 
							 |-  ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( A = C /\ B = D /\ R = S ) )  |