Metamath Proof Explorer
		
		
		
		Description:  Ordered triple theorem.  (Contributed by NM, 25-Sep-2014)  (Revised by Mario Carneiro, 26-Apr-2015)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						otth.1 | 
						   | 
					
					
						 | 
						 | 
						otth.2 | 
						   | 
					
					
						 | 
						 | 
						otth.3 | 
						   | 
					
				
					 | 
					Assertion | 
					otth | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							otth.1 | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							otth.2 | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							otth.3 | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							df-ot | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							df-ot | 
							   | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqeq12i | 
							   | 
						
						
							| 7 | 
							
								1 2 3
							 | 
							otth2 | 
							   | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitri | 
							   |