Metamath Proof Explorer


Theorem ord3

Description: Ordinal 3 is an ordinal class. (Contributed by BTernaryTau, 6-Jan-2025)

Ref Expression
Assertion ord3 Ord3𝑜

Proof

Step Hyp Ref Expression
1 2on 2𝑜On
2 eloni 2𝑜OnOrd2𝑜
3 ordsuci Ord2𝑜Ordsuc2𝑜
4 1 2 3 mp2b Ordsuc2𝑜
5 df-3o 3𝑜=suc2𝑜
6 ordeq 3𝑜=suc2𝑜Ord3𝑜Ordsuc2𝑜
7 5 6 ax-mp Ord3𝑜Ordsuc2𝑜
8 4 7 mpbir Ord3𝑜