Metamath Proof Explorer


Theorem ordgt0ge1

Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion ordgt0ge1 OrdAA1𝑜A

Proof

Step Hyp Ref Expression
1 0elon On
2 ordelsuc OnOrdAAsucA
3 1 2 mpan OrdAAsucA
4 df-1o 1𝑜=suc
5 4 sseq1i 1𝑜AsucA
6 3 5 bitr4di OrdAA1𝑜A