Metamath Proof Explorer


Theorem ordsson

Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of TakeutiZaring p. 38. (Contributed by NM, 18-May-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsson OrdAAOn

Proof

Step Hyp Ref Expression
1 ordon OrdOn
2 ordeleqon OrdAAOnA=On
3 2 biimpi OrdAAOnA=On
4 3 adantr OrdAOrdOnAOnA=On
5 ordsseleq OrdAOrdOnAOnAOnA=On
6 4 5 mpbird OrdAOrdOnAOn
7 1 6 mpan2 OrdAAOn