Metamath Proof Explorer


Theorem ordtr1

Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion ordtr1 OrdCABBCAC

Proof

Step Hyp Ref Expression
1 ordtr OrdCTrC
2 trel TrCABBCAC
3 1 2 syl OrdCABBCAC