Metamath Proof Explorer


Theorem ordtype

Description: For any set-like well-ordered class, there is an isomorphic ordinal number called its order type. (Contributed by Jeff Hankins, 17-Oct-2009) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypothesis oicl.1 F=OrdIsoRA
Assertion ordtype RWeARSeAFIsomE,RdomFA

Proof

Step Hyp Ref Expression
1 oicl.1 F=OrdIsoRA
2 eqid recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
3 eqid wA|jranhjRw=wA|jranhjRw
4 eqid hVιvwA|jranhjRw|uwA|jranhjRw¬uRv=hVιvwA|jranhjRw|uwA|jranhjRw¬uRv
5 2 3 4 ordtypecbv recsfVιsyA|iranfiRy|ryA|iranfiRy¬rRs=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
6 eqid xOn|tAzrecsfVιsyA|iranfiRy|ryA|iranfiRy¬rRsxzRt=xOn|tAzrecsfVιsyA|iranfiRy|ryA|iranfiRy¬rRsxzRt
7 simpl RWeARSeARWeA
8 simpr RWeARSeARSeA
9 5 3 4 6 1 7 8 ordtypelem10 RWeARSeAFIsomE,RdomFA