Metamath Proof Explorer


Theorem ordtypecbv

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
Assertion ordtypecbv recsfVιsyA|iranfiRy|ryA|iranfiRy¬rRs=F

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 breq1 u=ruRvrRv
5 4 notbid u=r¬uRv¬rRv
6 5 cbvralvw uC¬uRvrC¬rRv
7 breq2 v=srRvrRs
8 7 notbid v=s¬rRv¬rRs
9 8 ralbidv v=srC¬rRvrC¬rRs
10 6 9 bitrid v=suC¬uRvrC¬rRs
11 10 cbvriotavw ιvC|uC¬uRv=ιsC|rC¬rRs
12 breq1 j=ijRwiRw
13 12 cbvralvw jranhjRwiranhiRw
14 breq2 w=yiRwiRy
15 14 ralbidv w=yiranhiRwiranhiRy
16 13 15 bitrid w=yjranhjRwiranhiRy
17 16 cbvrabv wA|jranhjRw=yA|iranhiRy
18 2 17 eqtri C=yA|iranhiRy
19 rneq h=franh=ranf
20 19 raleqdv h=firanhiRyiranfiRy
21 20 rabbidv h=fyA|iranhiRy=yA|iranfiRy
22 18 21 eqtrid h=fC=yA|iranfiRy
23 22 raleqdv h=frC¬rRsryA|iranfiRy¬rRs
24 22 23 riotaeqbidv h=fιsC|rC¬rRs=ιsyA|iranfiRy|ryA|iranfiRy¬rRs
25 11 24 eqtrid h=fιvC|uC¬uRv=ιsyA|iranfiRy|ryA|iranfiRy¬rRs
26 25 cbvmptv hVιvC|uC¬uRv=fVιsyA|iranfiRy|ryA|iranfiRy¬rRs
27 3 26 eqtri G=fVιsyA|iranfiRy|ryA|iranfiRy¬rRs
28 recseq G=fVιsyA|iranfiRy|ryA|iranfiRy¬rRsrecsG=recsfVιsyA|iranfiRy|ryA|iranfiRy¬rRs
29 27 28 ax-mp recsG=recsfVιsyA|iranfiRy|ryA|iranfiRy¬rRs
30 1 29 eqtr2i recsfVιsyA|iranfiRy|ryA|iranfiRy¬rRs=F