Metamath Proof Explorer


Theorem ordtypelem1

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
ordtypelem.5 T=xOn|tAzFxzRt
ordtypelem.6 O=OrdIsoRA
ordtypelem.7 φRWeA
ordtypelem.8 φRSeA
Assertion ordtypelem1 φO=FT

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 ordtypelem.5 T=xOn|tAzFxzRt
5 ordtypelem.6 O=OrdIsoRA
6 ordtypelem.7 φRWeA
7 ordtypelem.8 φRSeA
8 iftrue RWeARSeAifRWeARSeAFxOn|tAzFxzRt=FxOn|tAzFxzRt
9 6 7 8 syl2anc φifRWeARSeAFxOn|tAzFxzRt=FxOn|tAzFxzRt
10 2 3 1 dfoi OrdIsoRA=ifRWeARSeAFxOn|tAzFxzRt
11 5 10 eqtri O=ifRWeARSeAFxOn|tAzFxzRt
12 4 reseq2i FT=FxOn|tAzFxzRt
13 9 11 12 3eqtr4g φO=FT