Metamath Proof Explorer


Theorem ordtypelem2

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
ordtypelem.5 T=xOn|tAzFxzRt
ordtypelem.6 O=OrdIsoRA
ordtypelem.7 φRWeA
ordtypelem.8 φRSeA
Assertion ordtypelem2 φOrdT

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 ordtypelem.5 T=xOn|tAzFxzRt
5 ordtypelem.6 O=OrdIsoRA
6 ordtypelem.7 φRWeA
7 ordtypelem.8 φRSeA
8 4 ssrab3 TOn
9 8 a1i φTOn
10 9 sselda φaTaOn
11 onss aOnaOn
12 10 11 syl φaTaOn
13 eloni aOnOrda
14 10 13 syl φaTOrda
15 imaeq2 x=aFx=Fa
16 15 raleqdv x=azFxzRtzFazRt
17 16 rexbidv x=atAzFxzRttAzFazRt
18 17 4 elrab2 aTaOntAzFazRt
19 18 simprbi aTtAzFazRt
20 19 adantl φaTtAzFazRt
21 ordelss Ordaxaxa
22 imass2 xaFxFa
23 ssralv FxFazFazRtzFxzRt
24 23 reximdv FxFatAzFazRttAzFxzRt
25 21 22 24 3syl OrdaxatAzFazRttAzFxzRt
26 25 ralrimdva OrdatAzFazRtxatAzFxzRt
27 14 20 26 sylc φaTxatAzFxzRt
28 ssrab axOn|tAzFxzRtaOnxatAzFxzRt
29 12 27 28 sylanbrc φaTaxOn|tAzFxzRt
30 29 4 sseqtrrdi φaTaT
31 30 ralrimiva φaTaT
32 dftr3 TrTaTaT
33 31 32 sylibr φTrT
34 ordon OrdOn
35 trssord TrTTOnOrdOnOrdT
36 8 34 35 mp3an23 TrTOrdT
37 33 36 syl φOrdT