Metamath Proof Explorer


Theorem orduni

Description: The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003)

Ref Expression
Assertion orduni OrdAOrdA

Proof

Step Hyp Ref Expression
1 ordsson OrdAAOn
2 ssorduni AOnOrdA
3 1 2 syl OrdAOrdA