Metamath Proof Explorer


Theorem oteq1

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq1 A=BACD=BCD

Proof

Step Hyp Ref Expression
1 opeq1 A=BAC=BC
2 1 opeq1d A=BACD=BCD
3 df-ot ACD=ACD
4 df-ot BCD=BCD
5 2 3 4 3eqtr4g A=BACD=BCD